A radical teoria pós-quântica, que tenta responder o que Einstein não conseguiu
“Uma nova moda surgiu na Física“, queixou-se Albert Einstein no início da década de 1930.
Essa “moda” era nada menos que a física ou a mecânica quântica. A sua mera existência colocou em perigo a teoria da relatividade geral, a maior criação de Einstein, publicada em 1915.
“Se isso tudo for verdade, então significa o fim da Física”, chegou a dizer o famoso cientista.
O ponto aqui é que a física quântica e a relatividade geral são incompatíveis.
Quase 100 anos se passaram e nenhuma das duas teorias cancelou a outra. Na verdade, ambas formam os pilares de todos os avanços da Física moderna.
A física quântica provou repetidamente ser a melhor explicação do comportamento das menores partículas do universo, como elétrons, glúons e quarks que constituem os átomos.
Por sua vez, a relatividade geral, que é a moderna teoria da gravidade, provou ser a melhor descrição de tudo o que acontece em grande escala, desde o funcionamento do Sistema Solar e dos buracos negros até a origem do universo.
No entanto, elas permanecem contraditórias entre si. Ou seja, as regras da relatividade geral funcionam perfeitamente para as galáxias, bem como para tudo o que nos rodeia e é visível: uma árvore, um gato, uma pérola…
Porém, assim que analisamos o comportamento de algo tão pequeno como um átomo, tudo muda.
Os pesquisadores não conseguem nem usar a mesma Matemática para explicar uma teoria e outra.
De alguma forma, a natureza consegue fazer com que os dois sistemas coexistam — mas a Ciência ainda não fez o mesmo.
Para muitos, esta incompatibilidade é a maior questão sem resposta da Física.
Einstein e milhares de outros pesquisadores em todo o mundo procuraram criar uma teoria que unisse a física quântica e a relatividade geral.
É o que muitos chamam de “teoria de tudo”, um nome tão atraente que virou título do premiado filme biográfico de Stephen Hawking, um dos renomados cientistas que tentaram — também sem sucesso — encontrar o “Santo Graal” da Física.
Agora, uma nova teoria propõe uma virada radical nesta charada secular.
Seu nome, porém, é menos mercadológico: ela é chamada de teoria pós-quântica da gravidade clássica e é liderada pelo físico Jonathan Oppenheim, do Instituto de Ciência e Tecnologia Quântica da Universidade College London (UCL), no Reino Unido.
Trata-se de algo tão revolucionário que mesmo alguns dos seus detratores reconhecem que essa é a primeira abordagem verdadeiramente original a surgir em pelo menos uma década.
A quarta força fundamental
Embora possa parecer contraditório, um dos aspectos mais inovadores da teoria de Oppenheim é o termo “clássico” em seu nome.
Até agora, a abordagem predominante para resolver a incompatibilidade entre a física quântica e a relatividade geral envolve modificar o último sistema para ajustá-lo ao primeiro.
É o que os físicos chamam de “quantização”, porque no final ela se converte numa teoria quântica.
“Quantizar” a relatividade geral faz ainda mais sentido se pensarmos que é algo que os cientistas já conseguiram fazer com as outras três forças fundamentais que governam o universo: a força nuclear fraca, a força nuclear forte e a força eletromagnética.
Mas eles simplesmente não conseguiram fazer o mesmo com a gravidade — e não foi por falta de tentativa.
“É um problema matemático muito difícil”, contextualiza Oppenheim à BBC News Mundo, o serviço em espanhol da BBC.
“Mas também é conceitualmente complicado, porque essas duas teorias têm diferenças tão fundamentais que é muito difícil conciliá-las.”
Ele explica: “Quase todas as tentativas assumiram que devemos ‘quantizar’ a gravidade. A minha sensação sobre a razão pela qual essa tarefa tem sido tão difícil é que talvez não seja possível e que apontamos para a coisa errada.”
Por isso, o pesquisador e a equipe dele decidiram mudar o foco e “modificar um pouco, ou muito, a teoria quântica, para que esses dois sistemas possam se encaixar”.
Na nova teoria, publicada em dezembro de 2023 nas revistas Nature Communications e Physical Review X, a relatividade geral continua a ser uma teoria não quântica, ou clássica.
A física Sabine Hossenfelder, do Centro de Filosofia Matemática de Munique, na Alemanha, que não fez parte da pesquisa da UCL, diz à BBC News Mundo que a ideia de Oppenheim “é muito legal”.
“É muito raro neste campo ver nascer uma nova ideia”, observa a especialista.
Hossenfelder fez parte de um comitê que revisou a teoria há seis anos e, embora a achasse interessante, considerou que ela era “muito especulativa, imatura e vaga”.
“Tinha tantas pontas soltas que parecia que poderia falhar completamente, por isso fiquei muito impressionada quando vi o que saiu vários anos depois, porque abordava quase todos esses pontos levantados”, diz ela, que esclarece com um sorriso “sempre ter algo a comentar e a observar”.
Dois conceitos básicos e um ‘inaceitável’
Antes de seguir a explicação sobre a teoria de Oppenheim, é importante compreender o conceito básico da relatividade geral e uma das características da física quântica que mais perturbou Einstein.
O que Einstein fez para revolucionar a Ciência em 1915 foi definir a gravidade como “uma deformação do espaço-tempo”.
A maneira mais fácil de compreender esse conceito é pensar em um trampolim onde colocamos uma bola pesada — por exemplo, uma bola de bilhar.
Quando uma coisa dessas acontece, o tecido afunda no local onde a bola está.
Agora, imagine jogar nesse mesmo trampolim uma bola mais leve (uma bola de gude), e tentar fazê-la girar na borda da curvatura do tecido relacionada ao peso da bola mais pesada.
O que acontece é que a bola de gude vai se mover em círculos cada vez menores, aproximando-se da bola de bilhar.
Segundo a teoria da relatividade geral, isso não acontece porque a bola de bilhar exerce sobre a bola de gude uma força de atração invisível, mas porque o formato do tecido — ou melhor, a sua deformação — a obriga a fazer essa curvatura.
Na teoria de Einstein, o espaço-tempo faz a mesma coisa de forma quadridimensional — de modo que a Terra gire em torno do Sol, por exemplo.
Oppenheim explica que, na teoria pós-quântica da gravidade clássica “o espaço-tempo se mantém como aquele tecido em que vivem as partículas quânticas, tal como Einstein concebeu”.
O que muda é que o espaço-tempo incorpora o acaso da física quântica, característica que deu origem a uma das frases mais famosas de Einstein: “Deus não joga dados.”
Einstein acreditava que faltava informação na “moda” da física quântica, mas o que décadas de estudos têm mostrado é que a aleatoriedade não se deve a um erro na teoria ou a uma falha nas medições, mas a uma característica inerente ao comportamento das partículas fundamentais.
Oppenheim e sua equipe unem a física quântica e a relatividade geral, tornando o espaço-tempo também inerentemente aleatório.
“Ainda temos essa aleatoriedade na teoria quântica, mas ela é mediada pelo próprio espaço-tempo”, explica o físico.
Em outras palavras, o próprio tecido começa a apresentar oscilações aleatórias.
Isto é algo “inaceitável” para muitos dos seus colegas — e é provável que Einstein também pensasse o mesmo.
“A estrutura aleatória do espaço-tempo é o que, em certo sentido, lança os dados na teoria quântica”, compara Oppenheim, parafraseando Einstein.
‘Ganha-ganha’
“Cada vez que você propõe uma nova teoria, é preciso fazer uma série de verificações para ver se ela é consistente com as observações”, explica Oppenheim.
“E é emocionante que esta teoria faz previsões que podem ser testadas experimentalmente.”
“Ao levar em conta que esta teoria exige que o espaço-tempo tenha flutuações, podemos busca-las”, acrescenta ele.
Para isso, os pesquisadores propõem medir o peso de uma massa com extrema precisão e verificar se ela é constante ou se apresenta certas oscilações.
Por exemplo, o Escritório Internacional de Pesos e Medidas, localizado na França, pesa rotineiramente um objeto que foi usado para criar o padrão mundial do que é hoje considerado exatamente um quilo.
Ao utilizar novas tecnologias de medição quântica, de acordo com a teoria pós-quântica da gravidade clássica, o peso do referido objeto deixaria de ser um quilo e se tornaria imprevisível.
“Se encontrarmos as flutuações, provaremos que a teoria é verdadeira e, se não as encontrarmos, conseguiremos refutá-la”, diz Oppenheim.
“Isso é particularmente emocionante”, confessa ele.
Mas há ainda mais coisas a descobrir.
Oppenheim entende que a nova teoria poderia responder a outra das grandes incógnitas da Física moderna: o que são a matéria escura e a energia escura.
Para entender a importância disso, é primeiro antes saber o que esses conceitos são (e não são).
Todos os planetas, estrelas e objetos cósmicos visíveis são feitos da chamada matéria normal. Juntos, eles representam cerca de 5% do universo.
Os 95% restantes ainda são um mistério — e por isso são chamados de matéria escura e energia escura.
Se nos estudos para verificar a nova teoria, as flutuações forem suficientemente intensas, elas “seriam candidatas muito fortes para o que pensamos ser matéria escura e energia escura”, segundo Oppenheim.
“Isso explicaria 95% da evolução do Universo, o que representaria um grande impacto”, complementa o pesquisador.
Por sua vez, Hossenfelder destaca que a equipe da UCL desenvolveu uma Matemática completamente nova para esta teoria e afirma que a mera existência desses trabalhos pode ser útil para outros fins.
Em suma, a história da Ciência está repleta de pesquisas que tiveram aplicações inesperadas.
O próprio Einstein, aliás, acendeu a centelha que levou à física quântica — a qual ele renunciou até o fim da vida.
“Se houvesse algo que pudesse confirmar que estas previsões são verdadeiras, isso seria muito interessante e certamente atrairia diversas pessoas para observá-las mais de perto”, considera Hossenfelder.
Mas a teoria só foi publicada há um ano — e derrubar décadas de consenso científico baseados nos estudos encabeçados por Einstein não será fácil.
Hossenfelder é cética sobre a nova teoria — algo que, na opinião dela, a coloca numa posição de “ganha-ganha”.
A cientista ganha se estiver certa no ceticismo dela. Mas também ganha se estiver errada, porque isso significaria que ela — e todos nós — testemunhamos em vida o nascimento de uma nova revolução da Física.